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ABSTRACT

Pathologists regularly use ink markings on histopathology slides to highlight specific areas of interest or orienta-
tion, making it an integral part of the workflow. Unfortunately, digitization of these ink-annotated slides hinders
any computer-aided analyses, particularly deep learning algorithms, which require clean data free from artifacts.
We propose a methodology that can identify and remove the ink markings for the purpose of computational
analyses. We propose a two-stage network with a binary classifier for ink filtering and Pix2Pix for ink removal.
We trained our network by artificially generating pseudo ink markings using only clean slides, requiring no man-
ual annotation or curation of data. Furthermore, we demonstrate our algorithm’s efficacy over an independent
dataset of H&E stained breast carcinoma slides scanned before and after the removal of pen markings. Our
quantitative analysis shows promising results, achieving 98.7% accuracy for the binary classifier. For Pix2Pix,
we observed a 65.6% increase in structure similarity index, a 21.3% increase in peak signal-to-noise ratio, and
a 30% increase in visual information fidelity. As only clean slides are required for training, the pipeline can
be adapted to multiple colors of ink markings or new domains, making it easy to deploy over different sets of
histopathology slides. Code and trained models are available at: https://github.com/Vishwesh4/Ink-WSI.

Keywords: Digital pathology, quality control, ink removal, classification, image-to-image translation, synthetic
data

1. INTRODUCTION

The digitization of histopathology slides has ushered in the rise of computer-aided analyses and interpretation of
histopathology images. Deep learning has emerged as the most popular technique for driving these computational
analyses, and has been applied to address various problem spaces such as cell detection,1,2 tissue segmentation,3,4

cancer grading,5 survival analysis6,7 and much more.8 However, these algorithms often require lots of clean,
artifact-free data. In a clinical workflow, ink markings are introduced on histopathology slides as a medical
record. These markings are often used to zone in on a specific area of interest, to identify regions of tissue to
be sampled for further genetic sequencing, or in general, for correct orientation or guidance. Many pathologists
routinely mark areas that may obscure important regions such as tumor stroma boundaries. These obscured
regions carry lots of information such as immune cells response, etc, which may be useful for the downstream task.
Unfortunately, the digitized version of these slides cannot be used for subsequent computational analysis due to
the corruption of slides by ink markings. Subsequent cleaning and re-scanning of the slides double the workload
of a pathologist and may potentially damage the slides. For downstream computational analyses, it is not only
important to identify pen markings but also to successfully remove them. Hence, we require a methodology that
could potentially identify and remove pen markings from whole slide images.

In this paper, we propose a methodology that could identify and remove the ink markings for the purpose
of computational analysis without requiring any manually annotated or curation of data. We propose a two-
stage network with a binary classifier for ink filtering and Pix2Pix for ink removal. We trained our network by
artificially generating pseudo ink markings using only clean slides. This methodology removes the requirement



(a) Whole slide image with ink markings (b) Ink removal from proposed methodology.

Figure 1: Example of a whole slide image with ink markings, our goal is to remove the ink from the patches to
enable computational analysis

of manually annotated data for training and makes it easier to expand the pipeline to new domains or multiple
colors of ink markings. The efficacy of the methodology is evaluated based on multiple metrics such as accuracy,
F1 score, structure similarity index (SSIM),9 peak signal to noise ratio (PSNR)10 and visual information fidelity
(VIF),11 over 45 pairs of ink stained and clean whole slide images.

2. RELATED WORKS

2.1 Image to Image translation

Image-to-image translation is a challenging problem in computer vision that aims to translate a given image from
source domain X to target domain Y . In this paradigm, the domains X and Y share similar semantic structures
but belong to different data distributions, for example, scans of the same body site using different modalities.
In our study, we focus on Pix2Pix12 model. It is a supervised method based on Conditional Generative Ad-
versarial Networks or Conditional GANs,13 which performs image-to-image translation by learning the mapping
between the source(X) and the target domain(Y ) using a corresponding dataset of images between X and Y
domains. Pix2Pix, a Conditional GAN, has two different architectures for its generator and discriminator. For
the generator, Pix2Pix uses U-Net,14 an encoder-decoder type architecture primarily developed for medical image
segmentation. The discriminator uses Patch-GAN, which classifies each N ×N patch from the generator output
as fake or real, and takes an average over all the predictions. The Pix2Pix network then uses a combination of L1

and GAN loss to optimize its two networks. It has been widely used to tackle diverse problems in computational
pathology. It has been used for stain normalization,15 HE to immunofluorescence slide translation,16 cytology
segmentation,17 high resolution image generation for data augmentation,18 and many more.

2.2 Ink Removal

Several works have been proposed to address ink removal from histopathology images using image-to-image
translation. Venkatesh et al.19 used a Cycle GAN20 for ink restoration given a set of ink patches. Cycle GANs,
based on GANs21 also do image-to-image translations by learning the mapping between source and target domain
using unpaired dataset. However, directly using Cycle GANs introduces unrealistic hallucinations in some types
of input patches.22 To minimize this, Ali et al.22 proposed a pipeline consisting of Convolutional Neural Network
(CNN), You look only once (Yolov3)23 and Cycle GAN to identify ink regions and subsequently remove them.
In brief, using a Sequential CNN, the patches are classified into clean patches(tissue devoid of ink), ink patches
(tissue containing ink), and patches with ink contaminating the background. Next, a Yolov3 was trained to get
a precise location of ink-contaminated areas from the patch. Cycle GAN was then used to restore the ink inside
the localized region and finally remove the ink markings. However, the pipeline faces many limitations. The
workflow uses a combination of three algorithms. Errors at any intermediary steps will propagate to subsequent
steps and magnify. Additionally, the pipeline requires a lot of well-annotated training data making the extension
of the algorithm to different ink colors strenuous. To address some of these issues, Juang et al24 introduced
Pix2Pix12 model for ink removal. The model is trained on patches from pairs of ink-stained and clean versions
of the slides. For inference, all the patches (both ink and clean patches) are passed through the Pix2Pix model,
which generates a clean version of the input patches. However, future expansion of the model to multiple ink
markers would require pathologists to manually curate such a dataset by scanning slides with and without ink.



Additionally, the pipeline uses Pix2Pix on the clean patches, which may corrupt the information as it goes
through the layers of conditional GANs.

3. METHODS

Our proposed methodology consists of two modules, a) Filter: a binary classifier with a Resnet1825 backbone,
and b) Corrector: a Pix2Pix architecture for removing ink from a given patch. In brief, patches of size n × n
are extracted from a given whole slide image, which gets classified into clean or ink patches by the ink filter.
All the ink patches are then passed to Pix2Pix, which generates a clean version of the ink patches. We curate
the training dataset by artificially generating ink markings using image processing, given a clean set of patches
for training the two modules. In the next subsection, we will discuss about artificially generating ink markings
using the ink generation module in detail.

(a) Overview of the training pipeline

(b) Overview of the testing pipeline

Figure 2: Overview of the proposed methodology

3.1 Ink Patch Generation

To facilitate the training of models without any labels, we propose the generation of artificial ink markings given
a clean patch using simple image processing techniques. Overall the ink mark in a patch can be broken down
into three main components, 1) the pen blob, which may partially or fully cover the patch under consideration,
2) the color, 3) and the texture. To emulate these three components, our methodology consists of the following
three steps, 1) generation of pen blob, 2) generation of colored texture, and 3) overlaying these two components
onto the given clean patch. Figure 3 illustrates our ink patch generation algorithm.

(a) Input clean
patch

(b) Template im-
age

(c) Generated pen
blob from fig. 3b

(d) Generated col-
ored texture

(e) Generated fake
ink patch

Figure 3: Overview of ink patch generation using clean patch



3.1.1 Generation of Pen Blob

To mimic the streaks made by the pathologist, we use EMNIST,26 an external handwritten dataset consisting of
digits and English alphabets. We select an image from the dataset and extract a tile at a random location, angle,
and scale. This way, we believe the extracted tile should emulate the shape of streaks that the pathologist would
make at high magnifications. This would make the model robust against patches with partial ink coverings.
Additionally, at random, we cover the whole patch with a pen blob to better replicate the diversity of ink
markings in a patch. Using these steps, we generate a binary mask of the pen blob and resize it to the original
patch size of n×n. Finally, we smooth the edges of the pen blob by applying gaussian blur on the binary mask.

3.1.2 Generation of Colored Texture

Since the markers used to color the WSI may have some inconsistencies in the intensity of ink across its markings,
we emulate this intricacy by taking color gradients across two random shades of a chosen ink color. We consider
multiple gradient types, such as linear, gaussian, or no gradient, to capture different kinds of varying ink intensity
inconsistencies. We also apply gaussian blur to get a smoother texture.

3.1.3 Overlaying

Let the given clean patch be I of shape n × n × 3. Let the generated pen blob mask be M of shape n × n and
the colored texture be T of shape n× n× 3. Taking a random opacity value α ∈ [0.5, 1], we overlay T and M,
onto I using the following equation, ensuring smooth transition.

Gij: = max(1−Mij , 1− α) · Iij: +min(Mij , α) ·Tij: (1)

where G is our generated ink patch, which can be used for training our two networks.

4. EXPERIMENTS

4.1 Dataset Preparation

For our experiments, we used two different datasets for training and testing. For training our algorithm, we used
only clean slides without any annotations. We extracted patches at a uniform stride from the TIGER dataset27

which has been collected from various sources at a resolution of 0.5µm/pixel. For evaluation of our algorithm,
we curated the test set using 45 H&E stained breast carcinoma slides procured at the Sunnybrook Research
Institute scanned at 0.5µm/pixel, containing ink markings of multiple colors. For each slide, we manually
annotated ink markings and clean regions for model evaluations. To evaluate the Pix2Pix model, these 45 slides
were subsequently cleaned and scanned at a higher resolution of 0.25µm/pixel. We extracted pairwise patches
using registration from both the clean and ink marked WSIs for Pix2Pix model evaluation. For each pair of whole
slide images, the non-rigid transformation matrix was determined by RANSAC28 from feature points detected
using SIFT.29 The transformation matrix was subsequently used for pairwise patch extraction from clean and
ink-marked whole slide images. The size of the image patch was set to 256 × 256, and the resolution was fixed
to 0.5µm/pixel, for both training and testing.

(a) Extracted patch from the ink
marked slide

(b) Extracted patch using registra-
tion from the clean slide

Figure 4: Example of pairwise patch extraction from ink marked and clean slides



4.2 Model Training

We used 92719 clean patches extracted from the TIGER dataset for training the ink filter. The patches were
selected randomly, and ink marks were generated on top of it. We used seven colors (black, brown, violet, light
blue, royal blue, light green, and teal) to generate ink marks. The network was trained using Binary Cross
Entropy loss and optimized using Adam optimizer with a learning rate of 0.001 for over 139 epochs.

We used over 52169 clean patches extracted from the TIGER dataset for training the Pix2Pix network. To
prevent a significant domain shift between the training and testing set for Pix2Pix, we used an additional 34
clean slides scanned at the Sunnybrook Research Institute separate from the test set. We extracted 33546 clean
patches from this additional dataset. These 85715 clean patches, paired with artificially generated ink patches
were used for training. The implementation of Pix2Pix was taken from the public repository.30 The network
was trained using the same set of hyperparameters as the original paper.12

4.3 Evaluation

For quantitative evaluation of our networks, we evaluate our ink filter network based on F1 scores, Area under
the Receiver Operation Characteristics curve(AUCROC), Recall, Accuracy, and Precision metrics. For the
evaluation of ink removal using Pix2Pix, we utilize multiple image metrics such as PSNR,10 SSIM,9 and VIF,11

giving an overall picture regarding the quality of ink removal. PSNR is the logarithm of division of the peak
signal over mean squared error between the reference and target images, which gives an approximation of the
restoration quality. SSIM, ranging from −1 to 1, calculates the degradation in structure between reference and
target images, meanwhile also taking luminance and contrast differences into account. VIF emulates human
perception of differences in the quality of images using concepts from information theory. For all these metrics,
a high value indicates better restoration quality.

5. RESULTS

5.1 Ink Filter

Overall, for testing our ink filter, we extracted 71812 patches consisting of 28375 patches containing ink marks
and 43437 clean patches with no ink marks, from the test set. The network achieved 98.73% accuracy on the
test set as shown in table 1. Figure 5 illustrates a heatmap of classification using an ink filter. The heatmap
demonstrates the efficacy of the network in detecting ink marks from WSIs.

Table 1: Performance of ink filter on testset

Total Patches True Positive False Positive False Negative True Negative
71812 27512 47 863 43390

Accuracy Precision Recall F1 Score AUCROC
98.73% 0.99 0.97 0.98 0.99

5.2 Ink Removal

For testing Pix2Pix for ink removal, we extracted 30000 pairs of patches from both sets of ink marked and clean
slides. The patches extracted from the ink-marked set of slides consisted of 15000 ink and 15000 clean patches.
For evaluating the algorithm, we calculated SSIM, PSNR, and VIF image metrics using pairs of patches across
different data groups. The data was divided into four groups, all tissue, inked tissue, clean tissue, and filtered
tissue patches. Here clean patches refer to 15000 clean patches that were passed through the Pix2Pix network
to assess if the model degraded the quality. Inked tissue patches refers to 15000 ink patches that were passed
through the Pix2Pix network. Here all tissue patches denotes all the 30000 patches in the test set, both ink
and clean, that were passed to the Pix2Pix network. Filtered tissue patches denotes our pipeline where only
patches that have been determined as ink patches by the ink filter network were passed to Pix2Pix, leaving the
model-determined clean set of patches unchanged. The results of the experiments are shown in table 2.



(a) Whole slide image with
ink markings

(b) Heatmap generated using ink filter. The red color de-
notes the detected ink patch and the blue color denotes
the clean patch

Figure 5: Output of Ink Filter network. Each pixel in the map (b) corresponds to the output of the ink filter
with 256× 256 patch as the input, extracted at a uniform stride of 256 pixels

Table 2: Performance of Pix2Pix on 30000 patches from testset across different groups of data. Here original and
restored refer to before and after patch restoration using Pix2Pix. Values are shown in the format of mean± std

SSIM PSNR VIF
Original Restored Original Restored Original Restored

All tissue patches 0.32 ±0.33 0.54 ±0.19 13.51 ±5.77 16.43 ±3.97 0.10 ±0.11 0.13 ±0.11
Inked tissue patches 0.05 ±0.22 0.47 ±0.20 9.13 ±4.10 14.95 ±3.88 0.08 ±0.14 0.14 ±0.13
Clean tissue patches 0.59 ±0.17 0.61 ±0.16 17.88 ±3.83 17.91 ±3.48 0.12 ±0.07 0.13 ±0.07

Filtered tissue patches 0.32 ±0.33 0.53 ±0.20 13.51 ±5.77 16.39 ±3.94 0.10 ±0.11 0.13 ±0.11

We observe an increase in SSIM, PSNR and VIF by 65.6%, 21.3% and 30% for our methodology respectively,
indicating improvement in image quality after restoration. For the clean tissue patches group, we observe the
SSIM of the original group to be around 0.59 ± 0.17, suggesting a quality difference between slides scanned at
0.25µm/pixel (clean slides) and those scanned at 0.5µm/pixel (ink slides), even in areas devoid of ink markings.
We can also visually observe the quality difference in Patch 3 column of Figure 6. We also observe an insignificant
difference in the image metrics before and after restoration for the clean tissue patches group, which confirms
that our Pix2Pix network is not degrading the clean set of patches.

We also showcase qualitative results of ink removal using Pix2Pix. Figure 6 showcases the successful restora-
tion by the trained Pix2Pix model. We observe that our model has successfully restored patches with different
ink colors, light ink shades, dark ink shades, and no ink shades. Our model however struggles with dark ink
shades as shown in figure 7. From these patches, it isn’t easy to retrieve the high frequency information, due
to which we observe Pix2Pix generating synthetic textures as shown in Patches 1, 4, and 5. We also observe
Pix2Pix adding colors to light regions present in the original patches with dark ink. Additionally, we observe
that the color of the nuclei is not restored correctly for some patches. We also observe Patch 1 in figure 7 to be
restored differently as compared to Patch 4 which is just as dark. This may potentially indicate different levels
of performance of the Pix2Pix network for different ink colors.

6. CONCLUSION

In this work, we have presented a methodology for identifying and removing ink markings without requiring any
curated or annotated data and using only clean slides. We trained the proposed pipeline consisting of ink filter
(Resnet18) and Pix2Pix by using clean patches and artificially generated ink patches. We have demonstrated
its efficacy by testing it successfully on whole slide images with real ink markings. The ink filter presented has
a high F1 score, and the Pix2Pix network shows promising results with increased SSIM, PSNR, and VIF scores.
This work addresses the limitations of strenuous data collection. This makes the expansion of the pipeline to
new domains and multiple ink colors easier, opening the possibility of easier deployment to different sets of



histopathology slides. For future work, we plan to investigate further whether the discoloration of nuclei affects
downstream tasks such as nuclei segmentation. We would also like to evaluate image metrics for the restoration
of patches with different ink colors since the Pix2Pix network may particularly struggle with colors close to the
eosin stain of pink.

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6

Ink Patch

Clean Patch

Ink restored Patch

Figure 6: Patch restoration of different patches using Pix2Pix

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6

Ink Patch

Clean Patch

Ink restored Patch

Figure 7: Failure cases of patch restoration using Pix2Pix
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